首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   24篇
  国内免费   30篇
大气科学   2篇
地球物理   16篇
地质学   170篇
海洋学   26篇
自然地理   11篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   10篇
  2019年   6篇
  2018年   9篇
  2017年   10篇
  2016年   8篇
  2015年   5篇
  2014年   9篇
  2013年   43篇
  2012年   9篇
  2011年   8篇
  2010年   7篇
  2009年   12篇
  2008年   3篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   10篇
  2003年   4篇
  2002年   9篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
排序方式: 共有225条查询结果,搜索用时 153 毫秒
91.
Cosmogenic 10Be surface exposure ages for bedrock sites around Torridon and the Applecross Peninsula in Wester Ross, northwest Scotland, provide new insights into the Lateglacial transition. Accounting for postglacial weathering, six statistically comparable exposure ages give a late Younger Dryas (G‐1) exposure age of 11.8 ± 1.1 ka. Two further outliers are tentative pre‐Younger Dryas exposure ages of 13.4 ± 0.5 ka in Torridon, and 17.5 ± 1.2 ka in Applecross. The Younger Dryas exposure ages have compelling implications for the deglaciation of marginal Loch Lomond Stadial ice fields in Torridon and Applecross. Firstly, they conflict with predictions of restricted ice cover and rapid retreat based on modelling experiments and climate proxies, instead fitting a model of vertically extensive and prolonged ice coverage in Wester Ross. Secondly, they indicate that >2 m of erosion took place in the upper valleys of Torridon and Applecross during the Younger Dryas, implying a dominantly warm‐based glacial regime. Finally, the exposure ages have clarified that corrie (cirque) glaciers did not readvance in Wester Ross, following final deglaciation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
92.
Gold mineralization associated with quartz reefs is related to the structural history of the Early Devonian, Walhalla Group. These reefs are situated in the Walhalla Synclinorium, developed during the Middle to Late Devonian Tabberabberan Orogeny. A pervasive north‐south‐trending axial planar cleavage and two styles of folding were produced during regional east‐west compression. The first are upright, open to close folds with sub‐horizontal fold axes. The second are plunging inclined, close to tight folds with fold axes that plunge steeply to the north and south. An extensional event is associated with the emplacement of the Woods Point Dyke swarm and a set of normal faults that offset all earlier structures. High‐angle reverse faults, which post‐date the folding and the emplacement of the dykes, were utilized as conduits for hydrothermal fluids and preferentially localize mineralization to laminated quartz veins. En echelon vein arrays formed during initial stages of reverse faulting became deformed during prolonged shearing to produce ptygmatic veins. Laminated quartz veins within high‐angle reverse faults contain arsenopyrite and pyrite in vein margins and gold in fractures that cross‐cut continuous quartz crystals. Gold, galena, chalcopyrite and sphalerite may also be deposited adjacent to and within fractured arsenopyrite and pyrite. Late‐stage, cross faults developed in a regime of north‐south compression and post‐date the laminated quartz veins and mineralization.  相似文献   
93.
耿马一带古近纪花岗岩类岩浆成因及演化   总被引:1,自引:0,他引:1  
从地质学、岩石学、岩石地球化学等方面,探讨耿马一带古近纪岩浆岩类成因类型和演化、形成的构造背景及其地球动力学。侵入于红色建造K1n及河湖相Em中,比三叠纪花岗岩更偏基性,地球化学特征显示同时具同碰撞及火山弧花岗岩性质。下地壳的拆沉作用,地壳加厚及陆内造山驱动力的影响,富铁超镁铁质堆晶体拆沉于地幔中。堆晶体发生部分熔融,拆沉物熔融岩浆与地壳熔融岩浆于地壳岩浆房产生完全混合作用,形成古近纪具同碰撞及弧火山属性的岩浆。这种混合岩浆上升运移,产生较强的分离结晶作用,多次脉动定位形成古近纪不同岩性单元花岗岩。结合同位素测年结果及其它地质事件,确定其于古近纪侵入于陆内,是陆内造山晚期导致拆沉作用的产物。  相似文献   
94.
Clastic sedimentary rocks, deposited on eastern North America in response to the Taconian Orogeny, commonly have Sm/Nd isotope relationships indicating substantial isotope disturbance near or subsequent to the time of sedimentation that may be associated with severe depletion in light rare earth elements (LREE). Affected units [Normanskill Formation (Austin Glen and Pawlet Members), Frankfort Formation and Perry Mountain Formation] are widely separated both geographically (western New York to western Maine) and stratigraphically (Middle Ordovician to Silurian). A model is proposed for the most likely explanation of the observed REE and Sm/Nd isotope relationships involving a two‐stage process. In the first stage, REE are redistributed on a mineralogical scale (dissolution/precipitation on a sample scale) often with the involvement of REE‐enriched trace phases such as apatite and monazite. This stage typically takes place during diagenesis but may also take place later during metamorphism and/or recent weathering, and results in isotope re‐equilibration on a sample scale. The second stage occurs when one or more of these phases is redissolved and REE are transported on large advective scales. Where LREE‐enriched phases are involved, this gives rise to LREE depletion in whole rocks. The timing of this second stage cannot be constrained from Sm/Nd isotope data and may take place at any time subsequent to the isotope re‐equilibration. Such complex histories of REE redistribution may result in serious errors in estimating Nd model ages but not in estimating the Nd isotope composition at the age of sedimentation. Thus, Sm/Nd ratios even of unmetamorphosed sedimentary rocks have to be carefully evaluated before the calculation of depleted mantle model ages for the provenance.  相似文献   
95.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   
96.
ABSTRACT

The intraplate Kwangsian Orogeny is a key orogenic event in South China in the mid-Paleozoic. We re-examined the evidence for the Yichang Uplift, an inferred geographic feature during the Kwangsian Orogeny, to evaluate its timing and nature. Field, sedimentological, mineralogical and geochronological data were collected from the Late Ordovician-Early Silurian Xiaohe section, Hunan-Hubei area. Results suggest that the Xiaohe section is composed of the Late Ordovician Wufeng Formation black shale in the lower part and the Early Silurian Longmaxi Formation black shale in the upper part. We found that the clay layers interbedded in the Wufeng Formation are altered rhyolitic tuffs instead of parts of a subaerial wreathing crust. LA-ICP-MS U-Pb dating of zircons in the top tuff layer of the Wufeng Formation yielded an age of 447.0 + 1.4/- 2.2 Ma, consistent with biostratigraphic data, providing a radiometric constraint for the sedimentary break existed between the Wufeng and Longmaxi formations and confirming the absence of the Hirnantian (latest Ordovician) Guanyinqiao Formation in the study area. Our data support that the Yichang Uplift was a submarine highland possibly initiated by the reactivation of the inherited Jianshi-Enshi Fault in the Hunan-Hubei area during the Kwangsian Orogeny.  相似文献   
97.
The Petermann Orogeny is a late Neoproterozoic to Cambrian ( c . 560–520  Ma) intracratonic event that affected the Musgrave Block and south-western Amadeus Basin in central Australia. In the Mann Ranges, within the central Musgrave Block, Mesoproterozoic granulite facies gneisses, granites and mafic dykes have been substantially reworked by deep crustal non-coaxial strain of late Neoproterozoic to early Cambrian age. Dolerite dykes have recrystallized to garnet granulite facies assemblages, associated with the development of a mylonitic fabric at P =12–13  kbar and T  =700–750 °C. Migmatization is restricted to discrete shear zones, which represent conduits for hydrous fluids during metamorphism. Peak metamorphism was followed by decompression to c . 7  kbar, reflecting exhumation of the terrane along the south-dipping Woodroffe Thrust. In scattered outcrops north of the Mann Ranges, peak metamorphism occurred at P =9–10  kbar and T  = c . 700 °C. The Woodroffe Thrust separates these deep crustal mylonites from granites that were metamorphosed during the Petermann Orogeny at P = c . 6–7  kbar and T  = c . 650 °C. The similarity in peak temperatures at different crustal levels implies an unusual thermal regime during this event. The existence of a relatively elevated geotherm corresponding with Th- and K-enriched granites that were in the mid-crust during the Petermann Orogeny suggests that radiogenic heat production may have substantially contributed to the thermal regime during metamorphism. This potentially has implications for the mechanisms by which intra-plate strain was localized during this event.  相似文献   
98.
东秦岭-大别山及邻区挠曲类盆地演化与碰撞造山过程   总被引:28,自引:3,他引:25       下载免费PDF全文
刘少峰  张国伟 《地质科学》1999,34(3):336-346
东秦岭-大别造山带是3 个板块沿两条缝合带俯冲碰撞而形成的近东西向不对称的反向多层次构造叠置的复合型造山带。在泥盆纪至三叠纪板块构造阶段中不同陆块间由于俯冲碰撞作用形成了多种挠曲类盆地。盆地时空演化充分体现了商丹古洋盆俯冲消减过程、北秦岭弧后区弧陆碰撞过程以及勉略古洋(海)盆斜向的、由东向西的碰撞造山过程。  相似文献   
99.
库车再生前陆盆地的构造演化   总被引:96,自引:14,他引:82       下载免费PDF全文
库车再生前陆盆地位于塔里木盆地的北缘,其沉积和构造特征具有典型的前陆盆地性质.库车再生前陆盆地开始形成于吉迪克组沉积早期(距今25Ma),叠置于晚二叠世-三叠纪前陆盆地之上,是始新世末印度-西藏碰撞的远距离构造效应所致.其中的前陆逆冲带是由浅部和深部两个层次的构造组成的,其构造特征具有不一致性和不协调性.库车再生前陆逆冲带内的台阶状逆断层及其相关褶皱都是伴随着中新世以来的造山运动形成的,由山前向盆地以背驮式渐次连续扩展,自渐新世晚期一直持续到现在.印度-西藏碰撞作用引起的陆内俯冲及壳内拆离-缩短作用是库车再生前陆盆地的形成机制.  相似文献   
100.
Foliated garnet-bearing amphibolites occur within the West Bore Shear Zone, cutting through granulite facies gneisses of the Strangways Metamorphic Complex. In the amphibolites, large euhedral garnet (up to 3 cm) occurs within fine-grained recrystallized leucocratic diffusion haloes of plagioclase–quartz. The garnet and their haloes include a well-developed vertical foliation, also present in the matrix. This foliation is the same as that cutting through the unconformably overlying Neoproterozoic Heavitree Quartzite. The textures indicate syn- to late kinematic growth of the amphibolite facies mineral assemblages.
All mineral assemblages record an arrested prograde reaction history. Noteworthy is the growth of garnet at the expense of hornblende and plagioclase, and the breakdown of staurolite–hornblende to give plagioclase–gedrite. These dehydration reactions indicate increasing P – T  conditions during metamorphism, and suggest heating towards the end of a period of intense deformation. Temperature estimates for the garnet–amphibolite and related staurolite–hornblende assemblages from the shear zone are about 600 °C. Pressure is estimated at about 5 kbar.
An Sm–Nd isochron gives an age of 381±7 Ma for the peak metamorphism and associated deformation. This age determination confirms that amphibolite facies conditions prevailed during shear zone development within the Strangways Metamorphic Complex during the Alice Springs Orogeny. These temperature conditions are significantly higher than those expected at this depth assuming a normal geothermal gradient. The Alice Springs Orogeny was associated with significant crustal thickening, allowing exhumation of the granulite facies, Palaeoproterozoic, lower crust. Along-strike variations of the tectonic style suggest a larger amount of crustal shortening in the eastern part of the Alice Springs Orogeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号